Энергия ток нейрон всплеск. Нейроны проводники электричества. Изменения мембранного потенциала. Потенциал действия

Следует сказать, что понятие праны имеет космический характер: под праной йоги понимают самую тонкую субстанцию мировой энергии. Поэтому прана, используемая живыми существами, обозначается иногда другим названием - «жизненная сила» или «жизненная энергия». Эта «жизненная сила» присутствует во всех организмах - от одноклеточных существ до человека. Прана находится во всем, что живет. А так как, согласно йоговскому представлению, «жизнь присутствует во всех вещах, включая каждый атом, и кажущееся отсутствие жизни есть лишь слабое проявление ее», следовательно, прана есть везде и во всем.

Любое существо живет, пока в этом существе есть прана. Если прана по каким-либо причинам исчезает, существо становится мертвым. И наоборот, прана уходит из неживого существа. Когда «Я» уходит из физического тела при его смерти, прана освобождается из-под действия «Я», покидает его и возвращается в общий мировой океан энергии. Прана остается только в неразлагающихся частях тела - атомах, и каждый атом, удерживает в себе столько праны, сколько ему нужно, чтобы войти в новые комбинации.

Тот факт, что организм пребывает в неразрывной связи с внешней средой и что энергетический обмен его со средой непрерывно осуществляется и является основой всех жизненных процессов, не вызывает сомнения и доказан наукой. Из энергетических веществ, которые принимают участие в этом обмене, науке известны белки, жиры, углеводы. Огромное значение для организма имеют также соли и витамины: хотя они содержатся в очень небольших количествах, но сильно влияют на ход энергетических процессов. Но, с точки зрения йогов, энергетический обмен на этом не ограничивается. Они считают, что накопление праны в организме и передача ее во внешнюю среду - существенный компонент энергетического обмена с внешней средой. Это подтверждается экспериментом Поля Брегга (повторенным в 1989 году известным пропагандистом здорового образа жизни Г. С. Шаталовой): имея суточный рацион питания менее 1000 ккал, Поль Брег (и затем Г. С. Шаталова со своими сподвижниками) тратил в течение суток при переходе через раскаленную пустыню значительно больше ккал. Кроме того, можно упомянуть так называемых сыроедов (не употребляющих мясо, рыбу, яйца и употребляющих вареную пищу в очень ограниченном количестве), которые при суточном рационе около 1000 ккал ведут подвижный образ жизни, тратя по 5-6 тысяч ккал в сутки. Очевидно, разница между количеством расходуемой энергии и потребляемой энергии из пищи компенсируется потреблением праны из окружающей среды.

Каким образом, с позиций научных исследований, энергия, получаемая организмом, переносится в самом организме? В 1961 году ученым - супругам Кирлиан удалось наблюдать и сфотографировать кожные покровы человеческого тела в токах высокой частоты. Причем оказалось, что токи «выползают» из одной точки, чтобы войти в другую, и имеют вид коронных разрядов, протуберанцев, окрашенных в различные цвета. Однако цвета эти, каждый из которых присущ определенному участку тела, могут резко измениться при неожиданных эмоциях (страх, гнев, боль и т. д.).

Из этого можно сделать выводы:

  1. энергия, использованная организмом, превращается в токи высокой частоты;
  2. каждый орган, ткань, клетка излучают энергию (в естественных условиях) в своем, только для них характерном диапазоне;
  3. в случае быстрых, неожиданных изменений диапазон частот резко меняется, наблюдается сдвиг в синюю или красную сторону спектра (в зависимости от того, активизируется или подавляется деятельность излучающего органа). Здесь следует подчеркнуть, что в если бы такие излучения и качественные изменения в их составе обусловливались только химическими реакциями, не могло бы идти и речи о практически мгновенной реакции на внешние раздражители.

В 1962 году учеными был сделан следующий шаг в углублении познания энергетического поля человека. Корейские исследователи открыли систему Кенрак , которая качественно отлична от нервной и кровеносно-лимфатической систем. Эта система представляет собой трубчатообразные структуры, имеющие очень тонкие стенки. В кожных и подкожных покровах трубки оканчиваются маленькими неплотными овальными структурами, резко отличными от близлежащих тканей,- это так называемые биоактивные точки (используемые при иглоукалывании, а также при точечном массаже).

В технике токи высокой частоты передаются по специальным трубкам-волноводам, так как при передаче по обычным проводам последние превращаются в антенны и большой процент мощности теряется на излучение. Система Кенрак представляет собой (по своей структуре) те же волноводы и, следовательно, предназначена для передачи токов высокой частоты.

В начале шестидесятых годов американскими учеными было обнаружено магнитное поле нервной клетки - нейрона. Оказалось, что прохождение тока действия в нервных волокнах обеспечивается возникновением этого поля и втягиванием в него электрона. Поскольку ток действия представляет собой физические электроны низкой частоты, для дальнейшей передачи их необходимо преобразовать в ток высокой частоты. Эту функцию (функцию магнетрона) и выполняет нейрон. В дальнейшем, «на выходе» ток высокой частоты вновь преобразуется в ток действия и вновь подлежит преобразованию в ток высокой частоты очередным нейроном. Такие превращения, естественно, отнимают определенное количество времени, в результате чего нервное возбуждение, передаваемое током действия, распространяется по нервному волокну медленнее, чем электрический ток по проводнику, но практически мгновенно - гораздо быстрее, нежели могут распространяться химические реакции в том случае, если окончание предшествующей кладет начало последующей. Можно предположить, что нейрон, выполняя в организме функцию магнетрона, играет и еще одну не менее важную роль: если организму требуется быстро отдать в среду какое-то количество энергии либо передать его другому организму с определенными целями, нейрон передает токи высокой частоты системе Кенрак, волноводы которой излучают ее в среду. Такая передача от нейронов к волноводам Кенрак может осуществляться спонтанно (в случае сильного эмоционального возбуждения) или сознательно (при этом большое значение имеет общее магнитное поле Земли, в котором достигается общая ориентация всех магнитных полей нейронов, их синхронная передача токов высокой частоты в системе Кенрак или синхронный прием токов высокой частоты от волноводов Кенрак).

Оценивая вышеизложенное, можно сказать, что организм живого существа оказывается теснейшим образом связанным с внешней средой за счет обмена токами высокой частоты. Его границы - это отнюдь не кожные покровы, над которыми «гуляют» обнаруженные Кирлиан разряды, и даже не область распространения этих зарядов. Организм живого существа, с точки зрения энергетического обмена, является частью среды, ибо способность высших животных и человека к излучению токов высокой частоты (передача мощности на большие расстояния в токах высокой частоты без проводов) как бы расширяет границы организма.

С точки зрения взаимодействия человека с внешней средой, биополе человека - это средство воздействия на объекты внешней среды и средство защиты от воздействия объектов внешней среды. Подчиняя биополе сознанию, усиливая его, можно направлять его к определенной цели: воздействовать на предметы, обладающие механической массой, перемещая их с места на место; читать мысли других людей, объединяясь с их сознанием; покрываясь энергетическим панцирем, предохранять себя от вредных воздействий тех или иных энергетических факторов.

Сразу сообщу, что данная заметка не имеет отношения к перцептронам, сетям Хопфилда или любым другим искусственным нейронным сетям. Мы будем моделировать работу «настоящей», «живой», биологической нейронной сети, в которой происходят процессы генерации и распространения нервных импульсов. В англоязычной литературе такие сети ввиду их отличия от искусственных нейронных сетей называются spiking neural networks, в русскоязычной же литературе – нет устоявшегося названия. Кто-то называет их просто нейронными сетям, кто-то – импульсными нейронными сетями, а кто-то – спайковыми.

Вероятно, большинство читателей слышали о проектах Blue Brain и Human Brain , спонсируемых Европейским Союзом, под последний проект правительство ЕС выдало около миллиарда евро, что говорит о наличии большого интереса к этой области. Оба проекта тесно связаны и пересекаются друг с другом, даже руководитель у них общий, Генри Маркрам , что может создать некоторую путаницу в том, чем же они отличаются друг от друга. Если кратко, то конечной целью обоих проектов является разработка модели работы целого мозга, всех ~86 миллиардов нейронов. Blue Brain Project – это вычислительная часть, а Human Brain – это больше фундаментальная часть, где работают над сбором научных данных о принципах работы мозга и созданием единой модели. Чтобы прикоснуться к этой науке и попробовать самим сделать нечто подобное, хотя и в значительно меньших масштабах, была написана эта заметка.

На хабре уже было несколько интересных и информативных статей по нейробиологии, что очень радует.
1. Нейробиология и искусственный интеллект: часть первая - ликбез.
2. Нейробиология и искусственный интеллект: часть вторая – интеллект и представление информации в мозгу.
3. Нейробиология и искусственный интеллект: часть третья – представление данных и память

Но в них не рассматривались вопросы вычислительной нейробиологии, или по-другому вычислительной нейронауки, включающей в себя компьютерное моделирование электрической активности нейронов, поэтому я решил восполнить этот пробел.

Немного биологии

Рис. 1 - Схематическое изображение строения нейрона.

Прежде чем приступим к моделированию, нам нужно ознакомиться с некоторыми азами нейробиологии. Типичный нейрон состоит из 3-х частей: тела (сомы), дендритов и аксона. Дендриты принимают сигнал от других нейронов (это input нейрона), а аксон передает сигналы от тела нейрона к другим нейронам (output). Место контакта аксона одного нейрона и дендрита другого нейрона называется синапсом. Сигнал, принимаемый с дендритов, суммируется в теле и если он превышает определённые порог, то генерируется нервный импульс или по-другому спайк. Тело клетки окружено липидной оболочкой, являющейся хорошим изолятором. Ионные составы цитоплазмы нейрона и межклеточной жидкости различаются. В цитоплазме концентрация ионов калия выше, а концентрация натрия и хлора ниже, в межклеточной же жидкости все наоборот. Это связано с работой ионных насосов, которые постоянно перекачивают определенные типы ионов против градиента концентрации, потребляя при этом энергию, запасенную в молекулах АденозиноТриФосфата (АТФ). Самым известным и изученным из таких насосов является натрий-калиевый насос. Он выводит 3 иона натрия в наружу, а внутрь нейрона забирает 2 иона калия. На рисунке 2 изображен ионный состав нейрона и отмечены ионные насосы. Благодаря работе этих насосов в нейроне образуется равновесная разность потенциалов между внутренней стороной мембраны, заряженной отрицательно, и внешней, заряженной положительно.

Рис. 2 - Ионный состав нейрона и окружающей среды

Кроме насосов на поверхности нейрона есть ещё ионные каналы, которые при изменении потенциала или при химическом воздействии могут открываться или закрываться, тем самым увеличивая или уменьшая токи определённого типа ионов. Если мембранный потенциал превышает некоторый порог, открываются натриевые каналы, а так как снаружи больше натрия, то возникает электрический ток направленный внутрь нейрона, что ещё больше увеличивает мембранный потенциал и ещё сильнее открывает натриевые каналы, происходит резкое увеличение мембранного потенциала. Физики назовут это положительной обратной связью. Но, начиная с какого-то значения потенциала, более высокого чем пороговый потенциал открытия натриевых каналов, открываются и калиевые каналы, благодаря чему ионы калия начинают течь в наружу, уменьшая мембранный потенциал и тем самым возвращая его к равновесному значению. Если же первоначальное возбуждение меньше порога открытия натриевых каналов, то нейрон вернётся к своему равновесному состоянию. Что интересно, амплитуда генерируемого импульса слабо зависит от амплитуды возбуждающего тока: либо импульс есть, либо его нет, закон «всё или ничего».

Кстати, именно принцип «всё или ничего» и вдохновил Мак-Каллока и Питтса на создание моделей искусственных нейронных сетей. Но область искусственных нейросетей развивается по своему, и главной её целью является наиболее оптимальное решение практических задач, безотносительно к тому, насколько это соотносится с процессами обработки информации в живом мозге. В то время как спайковые нейронные сети – это модель работы настоящего мозга. Можно собрать спайковую сеть для распознования визуальных образов, но для практического применения лучше подойдут классические нейронные сети, они проще, считаются на компьютере быстрее и для них придуманно множество алгоритмов для обучения под конкретные практические задачи.

Принцип «всё или ничего» наглядно изображён на рисунке 3. Внизу изображён входной ток, направленный к внутренней стороне мембраны нейрона, а вверху – разность потенциалов между внутренней и внешней стороной мембраны. Поэтому согласно доминирующей ныне концепции в живых нейронных сетях информация кодируется во временах возникновения импульсов или, как сказали бы физики, – путем фазовой модуляции.


Рис. 3 - Генерация нервного импульса. Внизу изображен подаваемый внутрь клетки ток в пкА, а вверху мембранный потенциал в мВ

Возбудить нейрон можно, например, воткнув в него микроэлектрод и подав ток внутрь нейрона, но в живом мозге возбуждение обычно происходит путем синаптического воздействия. Как уже было сказано, нейроны соединяются друг с другом с помощью синапсов, образующихся в местах контакта аксона одного нейрона с дендритами другого. Нейрон, от которого идет сигнал, называется пресинаптическим, а тот к которому идет сигнал – постсинаптическим. При возникновении импульса на пресинаптическом нейроне, он выделят в синаптическую щель нейротрансмиттеры, которые открывают натриевые каналы на постсинаптическом нейроне, а дальше происходит цепь описанных выше событий, приводящих к возбуждению. Кроме возбуждения нейроны могут и тормозить друг друга. В случае если пресинаптический нейрон тормозный, то он выделят в синаптическую щель тормозный нейротрансмиттер открывающий хлорные каналы, а так как снаружи хлора больше, то хлор течет внутрь нейрона из-за чего отрицательный заряд на внутренней стороне мембраны увеличивается (не забываем, что ионы хлора в отличии от натрия и калия заряжены отрицательно), вгоняя нейрон в ещё более неактивное состояние. В таком состоянии нейрон труднее возбудить.

Математическая модель нейрона

На основе описанных выше динамических механизмов работы нейрона может быть составлена его математическая модель. На данный момент созданы различные как относительно простые модели, вроде «Inregrate and Fire», в которой нейрон представляется в виде конденсатора и резистора, так и более сложные, биологически правдоподобные, модели, вроде модели Ходжкина-Хаксли, которая гораздо сложнее как в вычислительном плане так и в плане анализа её динамики, но она гораздо точнее описывает динамику мембранного потенциала нейрона. В данной же статье мы будем использовать модель Ижикевича , она представляет из себя компромисс между вычислительной сложностью и биофизической правдоподобностью. Несмотря на свою вычислительную простоту, в этой модели можно воспроизвести большое количество явлений, происходящих в настоящих нейронах. Модель Ижикевича задается в виде системы дифференциальных уравнений (Рисунок 4).


Рис. 4 - Модель Ижикевича

Где a, b, c, d, k, Cm различные параметры нейрона. Vm - это разность потенциалов на внутренней и внешней стороне мембраны, а Um - вспомогательная переменная. I - это внешний постоянный приложенный ток. В данной модели наблюдаются такие характерные для нейронов свойства как: генерация спайка в ответ на одиночный импульса внешнего тока и генерация последовательности спайков с определённой частотой при подаче на нейрон постоянного внешнего тока. Isyn - сумма синаптических токов от всех нейронов, с которыми связан этот нейрон.
В случае если на пресинаптическом нейроне генерируется спайк, на постсинаптическом происходит скачок синапического тока, который экспоненциально затухает с характерным временем.

Переходим к кодингу

Итак, мы приступаем к самому интересному. Пора закодить на компьютере виртуальный кусок нервной ткани. Для этого будем численно решать систему дифференциальных уравнений, задающих динамику мембранного потенциала нейрона. Для интегрирования будем использовать метод Эйлера. Кодить будем на С++, рисовать с помощью скриптов написанных на Python с использованием библиотеки Matplolib, но у кого нет Питона могут рисовать с помощью Exel.

Нам понадобятся двумерные массивы Vms, Ums размерности Tsim*Nneur для хранения мембранных потенциалов и вспомогательных переменных каждого нейрона, в каждый момент времени, Tsim это время симуляции в отсчетах, а Nneur количество нейронов в сети.
Связи будем хранить в виде двух массивов pre_con и post_con размерности Ncon , где индексами является номера связей, а значениями являются индексы пресинаптических и постсинаптических нейронов. Ncon - число связей.
Так же нам понадобится массив для представления переменной, модулирующей экспоненциально затухающий постсинаптический ток каждого синапса, для этого создаем массив y размерности Ncon*Tsim .

Const float h = .5f; // временной шаг интегрирования в мс const int Tsim = 1000/.5f; // время симуляции в дискретных отсчетах const int Nexc = 100; // Количество возбуждающих (excitatory) нейронов const int Ninh = 25; // Количество тормозных (inhibitory) нейронов const int Nneur = Nexc + Ninh; const int Ncon = Nneur*Nneur*0.1f; // Количество сязей, 0.1 это вероятность связи между 2-мя случайными нейронами float Vms; // мембранные потенциалы float Ums; // вспомогательные переменные модели Ижикевича float Iex; // внешний постоянный ток приложенный к нейрону float Isyn; // синаптический ток на каждый нейрон int pre_conns; // индексы пресинаптических нейронов int post_conns; // индексы постсинаптических нейронов float weights; // веса связей float y; // переменная модулирующая синаптический ток в зависимости от спайков на пресинапсе float psc_excxpire_time = 4.0f; // характерное вермя спадания постсинаптического тока, мс float minWeight = 50.0f; // веса, размерность пкА float maxWeight = 100.0f; // Параметры нейрона float Iex_max = 40.0f; // максимальный приложенный к нейрону ток 50 пкА float a = 0.02f; float b = 0.5f; float c = -40.0f; // значение мембранного потенциала до которого он сбрасываеться после спайка float d = 100.0f; float k = 0.5f; float Vr = -60.0f; float Vt = -45.0f; float Vpeak = 35.0f; // максимальное значение мембранного потенциала, при котором происходит сброс до значения с float V0 = -60.0f; // начальное значение для мембранного потенциала float U0 = 0.0f; // начальное значение для вспомогательной переменной float Cm = 50.0f; // электрическая ёмкость нейрона, размерность пкФ
Как уже было сказано, информация кодируется во временах возникновения импульсов, поэтому создаем массивы для сохранения времен их возникновения и индексов нейронов где они возникли. Далее их можно будет записать в файл, с целью визуализации.

Float spike_times; // времена возникновения спайков int spike_neurons; // индексы нейронов на которых происходят спайки int spike_num = 0; // номер спайка
Разбрасываем случайно связи и задаем веса.

Void init_connections(){ for (int con_idx = 0; con_idx < Ncon;){ // случайно выбираем постсипантические и пресинаптические нейроны pre_conns = rand() % Nneur; post_conns = rand() % Nneur; weights = (rand() % ((int)(maxWeight - minWeight)*10))/10.0f + minWeight; if (pre_conns >= Nexc){ // если пресинаптический нейрон тормозный то вес связи идет со знаком минус weights = -weights; } con_idx++; } }
Установка начальных условий для нейронов и случайное задание внешнего приложенного тока. Те нейроны для которых внешний ток превысит порог генерации спайков, будут генерировать спайки с постоянной частотой.

Void init_neurons(){ for (int neur_idx = 0; neur_idx < Nneur; neur_idx++){ // случайно разбрасываем приложенные токи Iex = (rand() % (int) (Iex_max*10))/10.0f; Isyn = 0.0f; Vms = V0; Ums = U0; } }
Основная часть программы с интегрированием модели Ижикевича.

Float izhik_Vm(int neuron, int time){ return (k*(Vms - Vr)*(Vms - Vt) - Ums + Iex + Isyn)/Cm; } float izhik_Um(int neuron, int time){ return a*(b*(Vms - Vr) - Ums); } int main(){ init_connections(); init_neurons(); float expire_coeff = exp(-h/psc_excxpire_time); // для экспоненциально затухающего тока for (int t = 1; t < Tsim; t++){ // проходим по всем нейронам for (int neur = 0; neur < Nneur; neur++){ Vms[t] = Vms + h*izhik_Vm(neur, t-1); Ums[t] = Ums + h*izhik_Um(neur, t-1); Isyn = 0.0f; if (Vms > Vpeak){ Vms[t] = c; Ums[t] = Ums + d; spike_times = t*h; spike_neurons = neur; spike_num++; } } // проходим по всем связям for (int con = 0; con < Ncon; con++){ y[t] = y*expire_coeff; if (Vms] > Vpeak){ y[t] = 1.0f; } Isyn] += y[t]*weights; } } save2file(); return 0; }
Полный текст кода можно скачать

Одно из таких устройств (изображено на фотографии ниже) стимулирует участки мозга, локализованные за лбом. Они отвечают за внимание.

В лабораторных условиях такая стимуляция длится не более 20 минут за один раз. Причем к участию в эксперименте допускаются только те люди, которые предварительно прошли строгий медицинский осмотр.

В конце концов, к мозгу испытуемых применяют устройства, которое, по словам ученых, могут дать неожиданные результаты. Например, воздействие на другие участки мозга или смена полярности электродов может не то что не помочь, а, наоборот, навредить человеку.

Вы можете причинить себе вред. Важно знать, как правильно пользоваться этим методом, выбрать подходящее время и мощность тока, — предупреждают ученые Оксфордского университета.

С ними соглашаются их коллеги из Университета в Суонси. По их словам, электростимуляторы мозга могут вызывать судороги и смену настроения. К группе повышенного риска относятся люди в возрасте до 20 лет – наиболее плодотворный период развития мозга.

Но больше всего ученых настораживает то, что многие технически одаренные дети собирают такие гаджеты своими руками. На форуме Reddit.com можно найти сообщения с жалобами на «обожженную кожу головы» и «вспышки гнева» после стимуляции мозга методом TDCS-терапии.

Такое может произойти при превышении положенной дозировки. В отличие от пациентов, простые обыватели в меньшей степени осведомлены о возможных рисках, – говорит исследователь Ник Дэвис из Университета в Суонси.

Маркетинг опережает науку

Оксфордские ученые призывают усилить контроль за электростимуляторами мозга. Некоторые компании позиционируют эти гаджеты как геймерские, хотя они относятся к изделиям медицинского назначения, которые подлежат соответствующей регистрации и контролю.

Ученые вовсе не хотят запретить или ограничить доступ к устройствам улучшения когнитивных способностей. Они хотят, чтобы пользователи знали, какие риски им придется принять в погоне за потенциальной выгодой.

Другая озабоченность связана с тем, что технология еще не готова для коммерческого использования. По словам невролога Стивена Новелла из Йельского университета, компании часто забирают из лабораторий непроверенные технологии и пытаются вывести их на рынок, называя их «секси».

Любое устройство с медицинской функциональностью должно соответственно регулироваться. Регулирование – это единственное, что мотивирует тратить деньги и время на исследования, — говорит Новелла.

По словам ученых, интерес к технологии будет только расти. Но пока не будут проведены дополнительные исследования, они рекомендуют использовать электростимуляторы мозга с осторожностью.

По материалам BBC.com

Статья на конкурс «био/мол/текст»: Клеточные процессы, обеспечивающие обмен информацией между нейронами, требуют много энергии. Высокое энергопотребление способствовало в ходе эволюции отбору наиболее эффективных механизмов кодирования и передачи информации. В этой статье вы узнаете о теоретическом подходе к изучению энергетики мозга, о его роли в исследованиях патологий, о том, какие нейроны более продвинуты, почему синапсам иногда выгодно не «срабатывать», а также, как они отбирают только нужную нейрону информацию.

Генеральный спонсор конкурса - компания : крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.


Спонсором приза зрительских симпатий и партнером номинации «Биомедицина сегодня и завтра» выступила фирма «Инвитро ».


«Книжный» спонсор конкурса - «Альпина нон-фикшн »

Происхождение подхода

С середины ХХ века известно, что головной мозг потребляет значительную часть энергоресурсов всего организма: четверть всей глюкозы и ⅕ всего кислорода в случае высшего примата . Это вдохновило Уильяма Леви и Роберта Бакстера из Массачусетского технологического института (США) на проведение теоретического анализа энергетической эффективности кодирования информации в биологических нейронных сетях (рис. 1) . В основе исследования лежит следующая гипотеза. Поскольку энергопотребление мозга велико, ему выгодно иметь такие нейроны, которые работают наиболее эффективно - передают только полезную информацию и затрачивают при этом минимум энергии.

Это предположение оказалось справедливым: на простой модели нейронной сети авторы воспроизвели экспериментально измеренные значения некоторых параметров . В частности, рассчитанная ими оптимальная частота генерации импульсов варьирует от 6 до 43 имп./с - почти так же, как и у нейронов основания гиппокампа . Их можно подразделить на две группы по частоте импульсации: медленные (~10 имп./с) и быстрые (~40 имп./с). При этом первая группа значительно превосходит по численности вторую . Аналогичная картина наблюдается и в коре больших полушарий: медленных пирамидальных нейронов (~4-9 имп./с) в несколько раз больше, чем быстрых ингибиторных интернейронов (>100 имп./с) , . Так, видимо, мозг «предпочитает» использовать поменьше быстрых и энергозатратных нейронов, чтобы те не израсходовали все ресурсы , .

Рисунок 1. Представлены два нейрона. В одном из них фиолетовым цветом окрашен пресинаптический белок синаптофизин . Другой нейрон полностью окрашен зеленым флуоресцентным белком . Мелкие светлые крапинки - синаптические контакты между нейронами . Во вставке одна «крапинка» представлена ближе.
Группы нейронов, связанных между собой синапсами, называются нейронными сетями , . Например, в коре больших полушарий пирамидальные нейроны и интернейроны образуют обширные сети. Слаженная «концертная» работа этих клеток обусловливает наши высшие когнитивные и другие способности. Аналогичные сети, только из других типов нейронов, распределены по всему мозгу, определенным образом связаны между собой и организуют работу всего органа.

Что такое интернейроны?

Нейроны центральной нервной системы разделяются на активирующие (образуют активирующие синапсы) и тормозящие (образуют тормозящие синапсы). Последние в значительной степени представлены интернейронами , или промежуточными нейронами. В коре больших полушарий и гиппокампе они ответственны за формирование гамма-ритмов мозга , которые обеспечивают слаженную, синхронную работу других нейронов. Это крайне важно для моторных функций, восприятия сенсорной информации, формирования памяти , .

Поиск оптимума

Фактически, речь идет о задаче оптимизации : поиска максимума функции и определения параметров, при которых он достигается. В нашем случае, функция - это отношение количества полезной информации к энергозатратам. Количество полезной информации можно примерно вычислить с помощью формулы Шеннона, широко используемой в теории информации , . Для расчета энергозатрат существуют два метода, и оба дают правдоподобные результаты , . Один из них - «метод счета ионов» - основан на подсчете количества ионов Na + , попавших внутрь нейрона при том или ином сигнальном событии (ПД или ПСП, см. врезку «Что такое потенциал действия ») с последующим переводом в число молекул аденозинтрифосфата (АТФ ), главной энергетической «валюты» клеток . Второй базируется на описании ионных токов через мембрану по законам электроники и позволяет вычислить мощность эквивалентной электрической цепи нейрона, которая затем переводится в затраты АТФ .

Эти «оптимальные» значения параметров затем нужно сравнить с измеренными экспериментально и определить, насколько они отличаются. Общая картина отличий укажет на степень оптимизации данного нейрона в целом: насколько реальные, измеренные экспериментально, значения параметров совпадают с рассчитанными. Чем слабее выражены отличия, тем нейрон более близок к оптимуму и работает энергетически более эффективно, оптимально. С другой стороны, сопоставление конкретных параметров покажет, в каком конкретно качестве этот нейрон близок к «идеалу».

Далее, в контексте энергетической эффективности нейронов рассмотрены два процесса, на которых основано кодирование и передача информации в мозге. Это нервный импульс, или потенциал действия, благодаря которому информация может быть отправлена «адресату» на определенное расстояние (от микрометров до полутора метров) и синаптическая передача, лежащая в основе собственно передачи сигнала от одного нейрона на другой.

Потенциал действия

Потенциал действия (ПД ) - сигнал, которые отправляют друг другу нейроны. ПД бывают разные: быстрые и медленные, малые и большие . Зачастую они организованы в длинные последовательности (как буквы в слова), либо в короткие высокочастотные «пачки» (рис. 2).

Рисунок 2. Разные типы нейронов генерируют различные сигналы. В центре - продольный срез мозга млекопитающего. Во вставках представлены разные типы сигналов, зарегистрированные методами электрофизиологии , . а - Кортикальные (Cerebral cortex ) пирамидальные нейроны могут передавать как низкочастотные сигналы (Regular firing ), так и короткие взрывные, или пачечные, сигналы (Burst firing ). б - Для клеток Пуркинье мозжечка (Cerebellum ) характерна только пачечная активность на очень высокой частоте. в - Релейные нейроны таламуса (Thalamus ) имеют два режима активности: пачечный и тонический (Tonic firing ). г - Нейроны средней части поводка (MHb , Medial habenula ) эпиталамуса генерируют тонические сигналы низкой частоты.

Что такое потенциал действия?

  1. Мембрана и ионы. Плазматическая мембрана нейрона поддерживает неравномерное распределение веществ между клеткой и внеклеточной средой (рис. 3б ) . В числе этих веществ есть и маленькие ионы, из которых для описания ПД важны К + и Nа + .
    Ионов Na + внутри клетки мало, снаружи - много. Из-за этого они постоянно стремятся попасть в клетку. Напротив, ионов К + много внутри клетки, и они норовят из нее выйти. Самостоятельно ионы этого сделать не могут, потому что мембрана для них непроницаема. Для прохождения ионов через мембрану необходимо открывание специальных белков - ионных каналов мембраны.
  2. Рисунок 3. Нейрон, ионные каналы и потенциал действия. а - Реконструкция клетки-канделябра коры головного мозга крысы. Синим окрашены дендриты и тело нейрона (синее пятно в центре), красным - аксон (у многих типов нейронов аксон разветвлен намного больше, чем дендриты , ). Зеленые и малиновые стрелки указывают направление потока информации: дендриты и тело нейрона принимают ее, аксон - отправляет ее к другим нейронам. б - Мембрана нейрона, как и любой другой клетки, содержит ионные каналы. Зеленые кружки - ионы Na + , синие - ионы К + . в - Изменение мембранного потенциала при генерации потенциала действия (ПД) нейроном Пуркинье. Зеленая область : Na-каналы открыты, в нейрон входят ионы Na + , происходит деполяризация. Синяя область: открыты К-каналы, К + выходит, происходит реполяризация. Перекрывание зеленой и синей областей соответствует периоду, когда происходит одновременный вход Na + и выход К + .

  3. Ионные каналы. Разнообразие каналов огромно , . Одни открываются в ответ на изменение мембранного потенциала, другие - при связывании лиганда (нейромедиатора в синапсе, например), третьи - в результате механических изменений мембраны и т.д. Открывание канала заключается в изменении его структуры, в результате которого через него могут проходить ионы. Некоторые каналы пропускают только определенный тип ионов, а для других характерна смешанная проводимость.
    В генерации ПД ключевую роль играют каналы, «чувствующие» мембранный потенциал, - потенциал-зависимые ионные каналы . Они открываются в ответ на изменение мембранного потенциала. Среди них нас интересуют потенциал-зависимые натриевые каналы (Na-каналы), пропускающие только ионы Na + , и потенциал-зависимые калиевые каналы (K-каналы), пропускающие только ионы К + .
  4. ПД - это относительно сильное по амплитуде скачкообразное изменение мембранного потенциала.

  5. Ионный ток и ПД. Основой ПД является ионный ток - движение ионов через ионные каналы мембраны . Так как ионы заряжены, их ток приводит к изменению суммарного заряда внутри и вне нейрона, что немедленно влечет за собой изменение мембранного потенциала.
    Генерация ПД, как правило, происходит в начальном сегменте аксона - в той его части, что примыкает к телу нейрона , . Тут сконцентрировано много Na-каналов. Если они откроются, внутрь аксона хлынет мощный ток ионов Na + , и произойдет деполяризация мембраны - уменьшение мембранного потенциала по абсолютной величине (рис. 3в ). Далее необходимо возвращение к его исходному значению - реполяризация . За это отвечают ионы К + . Когда К-каналы откроются (незадолго до максимума ПД), ионы К + начнут выходить из клетки и реполяризовать мембрану.
    Деполяризация и реполяризация - две основные фазы ПД. Помимо них выделяют еще несколько, которые из-за отсутствия необходимости здесь не рассматриваются. Детальное описание генерации ПД можно найти в , . Краткое описание ПД есть также в статьях на «Биомолекуле» , .
  6. Начальный сегмент аксона и инициация ПД. Что приводит к открыванию Na-каналов в начальном сегменте аксона? Опять же, изменение мембранного потенциала, «приходящее» по дендритам нейрона (рис. 3а ). Это - постсинаптические потенциалы (ПСП ), возникающие в результате синаптической передачи. Подробнее этот процесс объясняется в основном тексте.
  7. Проведение ПД. К ПД в начальном сегменте аксона будут неравнодушны Na-каналы, находящиеся неподалеку. Они тоже откроются в ответ на это изменение мембранного потенциала, что также вызовет ПД. Последний, в свою очередь, вызовет аналогичную «реакцию» на следующем участке аксона, все дальше от тела нейрона, и так далее. Таким образом происходит проведение ПД вдоль аксона , . В конце концов он достигнет его пресинаптических окончаний (малиновые стрелки на рис. 3а ), где сможет вызвать синаптическую передачу.
  8. Энергозатраты на генерацию ПД меньше, чем на работу синапсов. Скольких молекул аденозинтрифосфата (АТФ), главной энергетической «валюты», стоит ПД? По одной из оценок, для пирамидальных нейронов коры мозга крысы энергозатраты на генерацию 4 ПД в секунду составляют около ⅕ от общего энергопотребления нейрона. Если учесть другие сигнальные процессы, в частности, синаптическую передачу, доля составит ⅘. Для коры мозжечка, отвечающего за двигательные функции, ситуация похожа: энергозатраты на генерацию выходного сигнала составляют 15% от всех, а около половины приходится на обработку входной информации . Так, ПД является далеко не самым энергозатратным процессом. В разы больше энергии требует работа синапса , . Однако это не означает, что процесс генерации ПД не проявляет черт энергетической эффективности.

Анализ разных типов нейронов (рис. 4) показал, что нейроны беспозвоночных не очень энергоэффективны, а некоторые нейроны позвоночных почти совершенны . По результатам этого исследования, наиболее энергоэффективными оказались интернейроны гиппокампа , участвующего в формировании памяти и эмоций, а также таламокортикальные релейные нейроны, несущие основной поток сенсорной информации от таламуса к коре больших полушарий.

Рисунок 4. Разные нейроны эффективны по-разному. На рисунке представлено сравнение энергозатрат разных типов нейронов. Энергозатраты рассчитаны в моделях как с исходными (реальными) значениями параметров (черные столбцы ), так и с оптимальными, при которых с одной стороны нейрон выполняет положенную ему функцию, с другой - затрачивает при этом минимум энергии (серые столбцы ). Самыми эффективными из представленных оказались два типа нейронов позвоночных: интернейроны гиппокампа (rat hippocampal interneuron , RHI ) и таламокортикальные нейроны (mouse thalamocortical relay cell , MTCR ), так как для них энергозатраты в исходной модели наиболее близки к энергозатратам оптимизированной. Напротив, нейроны беспозвоночных менее эффективны. Условные обозначения: SA (squid axon ) - гигантский аксон кальмара; CA (crab axon ) - аксон краба; MFS (mouse fast spiking cortical interneuron ) - быстрый кортикальный интернейрон мыши; BK (honeybee mushroom body Kenyon cell ) - грибовидная клетка Кеньона пчелы.

Почему они более эффективны? Потому что у них малó перекрывание Na- и К-токов. Во время генерации ПД всегда есть промежуток времени, когда эти токи присутствуют одновременно (рис. 3в ). При этом переноса заряда практически не происходит, и изменение мембранного потенциала минимально. Но «платить» за эти токи в любом случае приходится, несмотря на их «бесполезность» в этот период. Поэтому его продолжительность определяет, сколько энергетических ресурсов растрачивается впустую. Чем он короче, тем более эффективно использование энергии , . Чем длиннее - тем менее эффективно. Как раз в двух вышеупомянутых типах нейронов, благодаря быстрым ионным каналам, этот период очень короткий, а ПД - самые эффективные .

Кстати, интернейроны гораздо более активны, чем большинство других нейронов мозга. В то же время они крайне важны для слаженной, синхронной работы нейронов, с которыми образуют небольшие локальные сети , . Вероятно, высокая энергетическая эффективность ПД интернейронов является некой адаптацией к их высокой активности и роли в координации работы других нейронов .

Синапс

Передача сигнала от одного нейрона к другому происходит в специальном контакте между нейронами, в синапсе . Мы рассмотрим только химические синапсы (есть еще электрические ), поскольку они весьма распространены в нервной системе и важны для регуляции клеточного метаболизма, доставки питательных веществ .

На пресинаптическом окончании аксона ПД вызывает выброс нейромедиатора во внеклеточную среду - к принимающему нейрону. Последний только этого и ждет с нетерпением: в мембране дендритов рецепторы - ионные каналы определенного типа - связывают нейромедиатор, открываются и пропускают через себя разные ионы. Это приводит к генерации маленького постсинаптического потенциала (ПСП) на мембране дендрита. Он напоминает ПД, но значительно меньше по амплитуде и происходит за счет открывания других каналов. Множество этих маленьких ПСП, каждый от своего синапса, «сбегаются» по мембране дендритов к телу нейрона (зеленые стрелки на рис. 3а ) и достигают начального сегмента аксона, где вызывают открывание Na-каналов и «провоцируют» его на генерацию ПД.

Такие синапсы называются возбуждающими : они способствуют активации нейрона и генерации ПД. Существуют также и тормозящие синапсы. Они, наоборот, способствуют торможению и препятствуют генерации ПД. Часто на одном нейроне есть и те, и другие синапсы. Определенное соотношение между торможением и возбуждением важно для нормальной работы мозга, формирования мозговых ритмов, сопровождающих высшие когнитивные функции .

Как это ни странно, выброс нейромедиатора в синапсе может и не произойти вовсе - это процесс вероятностный , . Нейроны так экономят энергию: синаптическая передача и так обусловливает около половины всех энергозатрат нейронов . Если бы синапсы всегда срабатывали, вся энергия пошла бы на обеспечение их работы, и не осталось бы ресурсов для других процессов. Более того, именно низкая вероятность (20–40%) выброса нейромедиатора соответствует наибольшей энергетической эффективности синапсов. Отношение количества полезной информации к затрачиваемой энергии в этом случае максимально , . Так, выходит, что «неудачи» играют важную роль в работе синапсов и, соответственно, всего мозга. А за передачу сигнала при иногда «не срабатывающих» синапсах можно не беспокоиться, так как между нейронами обычно много синапсов, и хоть один из них да сработает.

Еще одна особенность синаптической передачи состоит в разделении общего потока информации на отдельные компоненты по частоте модуляции приходящего сигнала (грубо говоря, частоте приходящих ПД) . Это происходит благодаря комбинированию разных рецепторов на постсинаптической мембране , . Некоторые рецепторы активируются очень быстро: например, AMPA-рецепторы (AMPA происходит от α-a mino-3-hydroxy-5-m ethyl-4-isoxazolep ropionic a cid). Если на постсинаптическом нейроне представлены только такие рецепторы, он может четко воспринимать высокочастотный сигнал (такой, как, например, на рис. 2в ). Ярчайший пример - нейроны слуховой системы, участвующие в определении местоположения источника звука и точном распознавании коротких звуков типа щелчка, широко представленных в речи , . NMDA-рецепторы (NMDA - от N -m ethyl-D -a spartate) более медлительны. Они позволяют нейронам отбирать сигналы более низкой частоты (рис. 2г ), а также воспринимать высокочастотную серию ПД как нечто единое - так называемое интегрирование синаптических сигналов . Есть еще более медленные метаботропные рецепторы , которые при связывании нейромедиатора, передают сигнал на цепочку внутриклеточных «вторичных посредников » для подстройки самых разных клеточных процессов. К примеру, широко распространены рецепторы, ассоциированные с G-белками . В зависимости от типа они, например, регулируют количество каналов в мембране или напрямую модулируют их работу .

Различные комбинации быстрых AMPA-, более медленных NMDA- и метаботропных рецепторов позволяют нейронам отбирать и использовать наиболее полезную для них информацию, важную для их функционирования . А «бесполезная» информация отсеивается, она не «воспринимается» нейроном. В таком случае не приходится тратить энергию на обработку ненужной информации. В этом и состоит еще одна сторона оптимизации синаптической передачи между нейронами.

Что еще?

Энергетическая эффективность клеток мозга исследуется также и в отношении их морфологии , . Исследования показывают, что ветвление дендритов и аксона не хаотично и тоже экономит энергию , . Например, аксон ветвится так, чтобы суммарная длина пути, который проходит ПД, была наименьшей. В таком случае энергозатраты на проведение ПД вдоль аксона минимальны.

Снижение энергозатрат нейрона достигается также при определенном соотношении тормозящих и возбуждающих синапсов . Это имеет прямое отношение, например, к ишемии (патологическому состоянию, вызванному нарушением кровотока в сосудах) головного мозга. При этой патологии, вероятнее всего, первыми выходят из строя наиболее метаболически активные нейроны , . В коре они представлены ингибиторными интернейронами, образующими тормозящие синапсы на множестве других пирамидальных нейронов , . В результате гибели интернейронов, снижается торможение пирамидальных . Как следствие, возрастает общий уровень активности последних (чаще срабатывают активирующие синапсы, чаще генерируются ПД). За этим немедленно следует рост их энергопотребления, что в условиях ишемии может привести к гибели нейронов.

При изучении патологий внимание уделяют и синаптической передаче как наиболее энергозатратному процессу . Например, при болезнях Паркинсона , Хантингтона , Альцгеймера происходит нарушение работы или транспорта к синапсам митохондрий, играющих основную роль в синтезе АТФ , . В случае болезни Паркинсона, это может быть связано с нарушением работы и гибелью высоко энергозатратных нейронов черной субстанции , важной для регуляции моторных функций, тонуса мышц. При болезни Хантингтона, мутантный белок хангтингтин нарушает механизмы доставки новых митохондрий к синапсам, что приводит к «энергетическому голоданию» последних, повышенной уязвимости нейронов и избыточной активации. Все это может вызвать дальнейшие нарушения работы нейронов с последующей атрофией полосатого тела и коры головного мозга. При болезни Альцгеймера нарушение работы митохондрий (параллельно со снижением количества синапсов) происходит из-за отложения амилоидных бляшек . Действие последних на митохондрии приводит к окислительному стрессу, а также к апоптозу - клеточной гибели нейронов.

Еще раз обо всем

В конце ХХ века зародился подход к изучению мозга, в котором одновременно рассматривают две важные характеристики: сколько нейрон (или нейронная сеть, или синапс) кодирует и передает полезной информации и сколько энергии при этом тратит , . Их соотношение является своего рода критерием энергетической эффективности нейронов, нейронных сетей и синапсов.

Использование этого критерия в вычислительной нейробиологии дало существенный прирост к знаниям относительно роли некоторых явлений, процессов , . В частности, малая вероятность выброса нейромедиатора в синапсе , определенный баланс между торможением и возбуждением нейрона , выделение только определенного рода приходящей информации благодаря определенной комбинации рецепторов - все это способствует экономии ценных энергетических ресурсов.

Более того, само по себе определение энергозатрат сигнальных процессов (например, генерация, проведение ПД, синаптическая передача) позволяет выяснить, какой из них пострадает в первую очередь при патологическом нарушении доставки питательных веществ , . Так как больше всего энергии требуется для работы синапсов, именно они первыми выйдут из строя при таких патологиях, как ишемия, болезни Альцгеймера и Хантингтона , . Схожим образом определение энергозатрат разных типов нейронов помогает выяснить, какой из них погибнет раньше других в случае патологии. Например, при той же ишемии, в первую очередь выйдут из строя интернейроны коры , . Эти же нейроны из-за интенсивного метаболизма - наиболее уязвимые клетки и при старении, болезни Альцгеймера и шизофрении .

Благодарности

Искренне благодарен моим родителям Ольге Наталевич и Александру Жукову, сестрам Любе и Алене, моему научному руководителю Алексею Браже и замечательным друзьям по лаборатории Эвелине Никельшпарг и Ольге Слатинской за поддержку и вдохновение, ценные замечания, сделанные при прочтении статьи. Я также очень благодарен редактору статьи Анне Петренко и главреду «Биомолекулы» Антону Чугунову за пометки, предложения и замечания.

Литература

  1. Прожорливый мозг ;
  2. SEYMOUR S. KETY. (1957). THE GENERAL METABOLISM OF THE BRAIN IN VIVO . Metabolism of the Nervous System . 221-237;
  3. L. Sokoloff, M. Reivich, C. Kennedy, M. H. Des Rosiers, C. S. Patlak, et. al.. (1977). THE DEOXYGLUCOSE METHOD FOR THE MEASUREMENT OF LOCAL CEREBRAL GLUCOSE UTILIZATION: THEORY, PROCEDURE, AND NORMAL VALUES IN THE CONSCIOUS AND ANESTHETIZED ALBINO RAT . J Neurochem . 28 , 897-916;
  4. Magistretti P.J. (2008). Brain energy metabolism . In Fundamental neuroscience // Ed by. Squire L.R., Berg D., Bloom F.E., du Lac S., Ghosh A., Spitzer N. San Diego: Academic Press, 2008. P. 271–297;
  5. Pierre J. Magistretti, Igor Allaman. (2015). A Cellular Perspective on Brain Energy Metabolism and Functional Imaging . Neuron . 86 , 883-901;
  6. William B Levy, Robert A. Baxter. (1996). Energy Efficient Neural Codes . Neural Computation . 8 , 531-543;
  7. Sharp P.E. and Green C. (1994). Spatial correlates of firing patterns of single cells in the subiculum of the freely moving rat . J. Neurosci. 14 , 2339–2356;
  8. H. Hu, J. Gan, P. Jonas. (2014). Fast-spiking, parvalbumin+ GABAergic interneurons: From cellular design to microcircuit function . Science . 345 , 1255263-1255263;
  9. Oliver Kann, Ismini E Papageorgiou, Andreas Draguhn. (2014). Highly Energized Inhibitory Interneurons are a Central Element for Information Processing in Cortical Networks . J Cereb Blood Flow Metab . 34 , 1270-1282;
  10. David Attwell, Simon B. Laughlin. (2001). An Energy Budget for Signaling in the Grey Matter of the Brain . J Cereb Blood Flow Metab . 21 , 1133-1145;
  11. Henry Markram, Maria Toledo-Rodriguez, Yun Wang, Anirudh Gupta, Gilad Silberberg, Caizhi Wu. (2004).
Понравилась статья? Поделиться с друзьями: